Operator splitting for space-dependent epidemic model

نویسندگان

چکیده

We present and analyse numerical methods with operator splitting procedures, applied to an epidemic model which takes into account the space-dependence of infection. derive conditions on time step, under preserve non-negativity monotonicity properties exact solution. Our results are illustrated by experiments.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic splitting operator methods for the time-dependent Schrodinger equation.

We present a family of symplectic splitting methods especially tailored to solve numerically the time-dependent Schrodinger equation. When discretized in time, this equation can be recast in the form of a classical Hamiltonian system with a Hamiltonian function corresponding to a generalized high-dimensional separable harmonic oscillator. The structure of the system allows us to build highly ef...

متن کامل

Operator Splitting for Kdv

We apply the method of operator splitting on the generalized Korteweg{de Vries (KdV) equation ut +f(u)x+"uxxx = 0, by solving the nonlinear conservation law ut +f(u)x = 0 and the linear dispersive equation ut + "uxxx = 0 sequentially. We prove that if the approximation obtained by operator splitting converges, then the limit function is a weak solution of the generalized KdV equation. Convergen...

متن کامل

Operator splitting

Operator splitting is a numerical method of computing the solution to a differential equation. The splitting method separates the original equation into two parts over a time step, separately computes the solution to each part, and then combines the two separate solutions to form a solution to the original equation. A canonical example is splitting of diffusion terms and convection terms in a c...

متن کامل

Operator splitting for delay equations

for the E-valued unknown function u, where E is a Banach space, B is the generator of a (linear) C0-semigroup on E, ut is the history function defined by ut(s) = u(t + s) and Φ is the delay operator. We will employ the semigroup approach on L-phase space (in the spirit of [4] and [5]) to be able to apply numerical splitting schemes to this problem. We prove convergence of theses schemes, invest...

متن کامل

ENTROPY FOR DTMC SIS EPIDEMIC MODEL

In this paper at rst, a history of mathematical models is given.Next, some basic information about random variables, stochastic processesand Markov chains is introduced. As follows, the entropy for a discrete timeMarkov process is mentioned. After that, the entropy for SIS stochastic modelsis computed, and it is proved that an epidemic will be disappeared after a longtime.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2021

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2020.09.010